On parallel and antiparallel topology of a homodimeric multidrug transporter.

نویسندگان

  • Misha Soskine
  • Shirley Mark
  • Naama Tayer
  • Roy Mizrachi
  • Shimon Schuldiner
چکیده

The recently suggested antiparallel topology of EmrE has intriguing implications for many aspects of the biology of ion-coupled transporters. However, it is at odds with biochemical data that demonstrated the same topology for all protomers in the intact cell and with extensive cross-linking studies. To examine this apparent contradiction we chemically cross-linked dimers with a rigid bifunctional maleimide using Cys replacements at positions not permissible by an antiparallel topology. A purified cross-linked dimer binds substrate and transports it in proteoliposomes with kinetic constants similar to those of the non-cross-linked dimer. The cross-linked dimers do not interact with non-cross-linked dimers as judged from the fact that inactive mutants do not affect their activity (negative dominance). The results support the contention that EmrE with parallel topology is fully functional. We show that the detergents used in crystallization increase the fraction of monomers in solution. We suggest that the antiparallel orientation observed is a result of the arrangement of the monomers in the crystal. Functionality of EmrE with the suggested antiparallel orientation of the monomers remains to be characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel topology of genetically fused EmrE homodimers.

EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so t...

متن کامل

Antiparallel dimers of the small multidrug resistance protein EmrE are more stable than parallel dimers.

The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are abl...

متن کامل

X-ray structure of the EmrE multidrug transporter in complex with a substrate.

EmrE is a prototype of the Small Multidrug Resistance family of efflux transporters and actively expels positively charged hydrophobic drugs across the inner membrane of Escherichia coli. Here, we report the x-ray crystal structure, at 3.7 angstrom resolution, of one conformational state of the EmrE transporter in complex with a translocation substrate, tetraphenylphosphonium. Two EmrE polypept...

متن کامل

X-ray structure of EmrE supports dual topology model.

EmrE, a multidrug transporter from Escherichia coli, functions as a homodimer of a small four-transmembrane protein. The membrane insertion topology of the two monomers is controversial. Although the EmrE protein was reported to have a unique orientation in the membrane, models based on electron microscopy and now defunct x-ray structures, as well as recent biochemical studies, posit an antipar...

متن کامل

A Set of Computationally Designed Orthogonal Antiparallel Homodimers that Expands the Synthetic Coiled-Coil Toolkit

Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 47  شماره 

صفحات  -

تاریخ انتشار 2006